What is the easiest way to remove duplicate columns from a dataframe?

I am reading a text file that has duplicate columns via:

import pandas as pd

df=pd.read_table(fname)

The column names are:

Time, Time Relative, N2, Time, Time Relative, H2, etc...

All the Time and Time Relative columns contain the same data. I want:

Time, Time Relative, N2, H2

All my attempts at dropping, deleting, etc such as:

df=df.T.drop_duplicates().T

Result in uniquely valued index errors:

Reindexing only valid with uniquely valued index objects

Sorry for being a Pandas noob. Any Suggestions would be appreciated.


Additional Details

Pandas version: 0.9.0
Python Version: 2.7.3
Windows 7
(installed via Pythonxy 2.7.3.0)

data file (note: in the real file, columns are separated by tabs, here they are separated by 4 spaces):

Time    Time Relative [s]    N2[%]    Time    Time Relative [s]    H2[ppm]
2/12/2013 9:20:55 AM    6.177    9.99268e+001    2/12/2013 9:20:55 AM    6.177    3.216293e-005    
2/12/2013 9:21:06 AM    17.689    9.99296e+001    2/12/2013 9:21:06 AM    17.689    3.841667e-005    
2/12/2013 9:21:18 AM    29.186    9.992954e+001    2/12/2013 9:21:18 AM    29.186    3.880365e-005    
... etc ...
2/12/2013 2:12:44 PM    17515.269    9.991756+001    2/12/2013 2:12:44 PM    17515.269    2.800279e-005    
2/12/2013 2:12:55 PM    17526.769    9.991754e+001    2/12/2013 2:12:55 PM    17526.769    2.880386e-005
2/12/2013 2:13:07 PM    17538.273    9.991797e+001    2/12/2013 2:13:07 PM    17538.273    3.131447e-005

15 Answers
15

Tags:

Leave a Reply

Your email address will not be published. Required fields are marked *