I was asked this question in a job interview, and I’d like to know how others would solve it. I’m most comfortable with Java, but solutions in other languages are welcome.
Given an array of numbers,
nums
, return an array of numbersproducts
, whereproducts[i]
is the product of allnums[j], j != i
.Input : [1, 2, 3, 4, 5] Output: [(2*3*4*5), (1*3*4*5), (1*2*4*5), (1*2*3*5), (1*2*3*4)] = [120, 60, 40, 30, 24]
You must do this in
O(N)
without using division.
48 Answers
An explanation of polygenelubricants method is:
The trick is to construct the arrays (in the case for 4 elements):
{ 1, a[0], a[0]*a[1], a[0]*a[1]*a[2], }
{ a[1]*a[2]*a[3], a[2]*a[3], a[3], 1, }
Both of which can be done in O(n) by starting at the left and right edges respectively.
Then, multiplying the two arrays element-by-element gives the required result.
My code would look something like this:
int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
products_below[i] = p;
p *= a[i];
}
int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
products_above[i] = p;
p *= a[i];
}
int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
products[i] = products_below[i] * products_above[i];
}
If you need the solution be O(1) in space as well, you can do this (which is less clear in my opinion):
int a[N] // This is the input
int products[N];
// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
products[i] = p;
p *= a[i];
}
// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
products[i] *= p;
p *= a[i];
}