I’m starting from the pandas DataFrame docs here: http://pandas.pydata.org/pandas-docs/stable/dsintro.html

I’d like to iteratively fill the DataFrame with values in a time series kind of calculation.
So basically, I’d like to initialize the DataFrame with columns A, B and timestamp rows, all 0 or all NaN.

I’d then add initial values and go over this data calculating the new row from the row before, say row[A][t] = row[A][t-1]+1 or so.

I’m currently using the code as below, but I feel it’s kind of ugly and there must be a way to do this with a DataFrame directly, or just a better way in general.
Note: I’m using Python 2.7.

import datetime as dt
import pandas as pd
import scipy as s

if __name__ == '__main__':
    base = dt.datetime.today().date()
    dates = [ base - dt.timedelta(days=x) for x in range(0,10) ]
    dates.sort()

    valdict = {}
    symbols = ['A','B', 'C']
    for symb in symbols:
        valdict[symb] = pd.Series( s.zeros( len(dates)), dates )

    for thedate in dates:
        if thedate > dates[0]:
            for symb in valdict:
                valdict[symb][thedate] = 1+valdict[symb][thedate - dt.timedelta(days=1)]

    print valdict

7 s
7

Leave a Reply

Your email address will not be published. Required fields are marked *