I’ve been racking my brain for a week trying to complete this assignment and I’m hoping someone here can lead me toward the right path. Let me start with the instructor’s instructions:
Your assignment is the opposite of our first lab assignment, which was to optimize a prime number program. Your purpose in this assignment is to pessimize the program, i.e. make it run slower. Both of these are CPU-intensive programs. They take a few seconds to run on our lab PCs. You may not change the algorithm.
To deoptimize the program, use your knowledge of how the Intel i7 pipeline operates. Imagine ways to re-order instruction paths to introduce WAR, RAW, and other hazards. Think of ways to minimize the effectiveness of the cache. Be diabolically incompetent.
The assignment gave a choice of Whetstone or Monte-Carlo programs. The cache-effectiveness comments are mostly only applicable to Whetstone, but I chose the Monte-Carlo simulation program:
// Un-modified baseline for pessimization, as given in the assignment
#include <algorithm> // Needed for the "max" function
#include <cmath>
#include <iostream>
// A simple implementation of the Box-Muller algorithm, used to generate
// gaussian random numbers - necessary for the Monte Carlo method below
// Note that C++11 actually provides std::normal_distribution<> in
// the <random> library, which can be used instead of this function
double gaussian_box_muller() {
double x = 0.0;
double y = 0.0;
double euclid_sq = 0.0;
// Continue generating two uniform random variables
// until the square of their "euclidean distance"
// is less than unity
do {
x = 2.0 * rand() / static_cast<double>(RAND_MAX)-1;
y = 2.0 * rand() / static_cast<double>(RAND_MAX)-1;
euclid_sq = x*x + y*y;
} while (euclid_sq >= 1.0);
return x*sqrt(-2*log(euclid_sq)/euclid_sq);
}
// Pricing a European vanilla call option with a Monte Carlo method
double monte_carlo_call_price(const int& num_sims, const double& S, const double& K, const double& r, const double& v, const double& T) {
double S_adjust = S * exp(T*(r-0.5*v*v));
double S_cur = 0.0;
double payoff_sum = 0.0;
for (int i=0; i<num_sims; i++) {
double gauss_bm = gaussian_box_muller();
S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm);
payoff_sum += std::max(S_cur - K, 0.0);
}
return (payoff_sum / static_cast<double>(num_sims)) * exp(-r*T);
}
// Pricing a European vanilla put option with a Monte Carlo method
double monte_carlo_put_price(const int& num_sims, const double& S, const double& K, const double& r, const double& v, const double& T) {
double S_adjust = S * exp(T*(r-0.5*v*v));
double S_cur = 0.0;
double payoff_sum = 0.0;
for (int i=0; i<num_sims; i++) {
double gauss_bm = gaussian_box_muller();
S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm);
payoff_sum += std::max(K - S_cur, 0.0);
}
return (payoff_sum / static_cast<double>(num_sims)) * exp(-r*T);
}
int main(int argc, char **argv) {
// First we create the parameter list
int num_sims = 10000000; // Number of simulated asset paths
double S = 100.0; // Option price
double K = 100.0; // Strike price
double r = 0.05; // Risk-free rate (5%)
double v = 0.2; // Volatility of the underlying (20%)
double T = 1.0; // One year until expiry
// Then we calculate the call/put values via Monte Carlo
double call = monte_carlo_call_price(num_sims, S, K, r, v, T);
double put = monte_carlo_put_price(num_sims, S, K, r, v, T);
// Finally we output the parameters and prices
std::cout << "Number of Paths: " << num_sims << std::endl;
std::cout << "Underlying: " << S << std::endl;
std::cout << "Strike: " << K << std::endl;
std::cout << "Risk-Free Rate: " << r << std::endl;
std::cout << "Volatility: " << v << std::endl;
std::cout << "Maturity: " << T << std::endl;
std::cout << "Call Price: " << call << std::endl;
std::cout << "Put Price: " << put << std::endl;
return 0;
}
The changes I have made seemed to increase the code running time by a second but I’m not entirely sure what I can change to stall the pipeline without adding code. A point to the right direction would be awesome, I appreciate any responses.
Update: the professor who gave this assignment posted some details
The highlights are:
- It’s a second semester architecture class at a community college (using the Hennessy and Patterson textbook).
- the lab computers have Haswell CPUs
- The students have been exposed to the
CPUID
instruction and how to determine cache size, as well as intrinsics and theCLFLUSH
instruction. - any compiler options are allowed, and so is inline asm.
- Writing your own square root algorithm was announced as being outside the pale
Cowmoogun’s comments on the meta thread indicate that it wasn’t clear compiler optimizations could be part of this, and assumed -O0
, and that a 17% increase in run-time was reasonable.
So it sounds like the goal of the assignment was to get students to re-order the existing work to reduce instruction-level parallelism or things like that, but it’s not a bad thing that people have delved deeper and learned more.
Keep in mind that this is a computer-architecture question, not a question about how to make C++ slow in general.