How does the “view” method work in PyTorch?

I am confused about the method view() in the following code snippet.

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool  = nn.MaxPool2d(2,2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1   = nn.Linear(16*5*5, 120)
        self.fc2   = nn.Linear(120, 84)
        self.fc3   = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16*5*5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

My confusion is regarding the following line.

x = x.view(-1, 16*5*5)

What does tensor.view() function do? I have seen its usage in many places, but I can’t understand how it interprets its parameters.

What happens if I give negative values as parameters to the view() function? For example, what happens if I call, tensor_variable.view(1, 1, -1)?

Can anyone explain the main principle of view() function with some examples?

9 Answers
9

Leave a Comment