What are the differences between multidimensional arrays double[,]
and array-of-arrays double[][]
in C#?
If there is a difference, what is the best use for each one?
What are the differences between multidimensional arrays double[,]
and array-of-arrays double[][]
in C#?
If there is a difference, what is the best use for each one?
Update .NET 6:
With the release of .NET 6 I decided it was a good time to revisit this topic. I rewrote the test code for new .NET and ran it with the requirement of each part running at least a second. The benchmark was done on AMD Ryzen 5600x.
Results? It’s complicated. It seems that Single array is the most performant for smaller and large arrays (< ~25x25x25 & > ~200x200x200) and Jagged arrays being fastest in between. Unfortunately it seems from my testing that multi-dimensional are by far the slowest option. At best performing twice as slow as the fastest option. But! It depends on what you need the arrays for because jagged arrays can take much longer to initialize on 50^3 cube the initialization was roughly 3 times longer than single dimensional. Multi-dimensional was only a little bit slower than single dimensional.
The conclusion? If you need fast code, benchmark it yourself on the machine it’s going to run on. CPU architecture can complete change the relative performance of each method.
Numbers!
Method name Ticks/Iteration Scaled to the best
Array size 1x1x1 (10,000,000 iterations):
Jagged: 0.15 4.28
Single: 0.035 1
Multi-dimensional: 0.77 22
Array size 10x10x10 (25,000 iterations):
Jagged: 15 1.67
Single: 9 1
Multi-dimensional: 56 6.2
Array size 25x25x25 (25,000 iterations):
Jagged: 157 1.3
Single: 120 1
Multi-dimensional: 667 5.56
Array size 50x50x50 (10,000 iterations):
Jagged: 1,140 1
Single: 2,440 2.14
Multi-dimensional: 5,210 4.57
Array size 100x100x100 (10,000 iterations):
Jagged: 9,800 1
Single: 19,800 2
Multi-dimensional: 41,700 4.25
Array size 200x200x200 (1,000 iterations):
Jagged: 161,622 1
Single: 175,507 1.086
Multi-dimensional: 351,275 2.17
Array size 500x500x500 (100 iterations):
Jagged: 4,057.413 1.5
Single: 2,709,301 1
Multi-dimensional: 5,359,393 1.98
Don’t trust me? Run it yourself and verify.
Note: the constant size seems to give jagged arrays an edge, but is not significant enough to change the order in my benchmarks. I have measured in some instance ~7% decrease in performance when using size from user input for jagged arrays, no difference for single arrays and very small difference (~1% or less) for multi-dimensional arrays. It is most prominent in the middle where jagged arrays take the lead.
using System.Diagnostics;
const string Format = "{0,7:0.000} ";
const int TotalPasses = 25000;
const int Size = 50;
Stopwatch timer = new();
var functionList = new List<Action> { Jagged, Single, SingleStandard, Multi };
Console.WriteLine("{0,5}{1,20}{2,20}{3,20}{4,20}", "Run", "Ticks", "ms", "Ticks/Instance", "ms/Instance");
foreach (var item in functionList)
{
var warmup = Test(item);
var run = Test(item);
Console.WriteLine($"{item.Method.Name}:");
PrintResult("warmup", warmup);
PrintResult("run", run);
Console.WriteLine();
}
static void PrintResult(string name, long ticks)
{
Console.WriteLine("{0,10}{1,20}{2,20}{3,20}{4,20}", name, ticks, string.Format(Format, (decimal)ticks / TimeSpan.TicksPerMillisecond), (decimal)ticks / TotalPasses, (decimal)ticks / TotalPasses / TimeSpan.TicksPerMillisecond);
}
long Test(Action func)
{
timer.Restart();
func();
timer.Stop();
return timer.ElapsedTicks;
}
static void Jagged()
{
for (var passes = 0; passes < TotalPasses; passes++)
{
var jagged = new int[Size][][];
for (var i = 0; i < Size; i++)
{
jagged[i] = new int[Size][];
for (var j = 0; j < Size; j++)
{
jagged[i][j] = new int[Size];
for (var k = 0; k < Size; k++)
{
jagged[i][j][k] = i * j * k;
}
}
}
}
}
static void Multi()
{
for (var passes = 0; passes < TotalPasses; passes++)
{
var multi = new int[Size, Size, Size];
for (var i = 0; i < Size; i++)
{
for (var j = 0; j < Size; j++)
{
for (var k = 0; k < Size; k++)
{
multi[i, j, k] = i * j * k;
}
}
}
}
}
static void Single()
{
for (var passes = 0; passes < TotalPasses; passes++)
{
var single = new int[Size * Size * Size];
for (var i = 0; i < Size; i++)
{
int iOffset = i * Size * Size;
for (var j = 0; j < Size; j++)
{
var jOffset = iOffset + j * Size;
for (var k = 0; k < Size; k++)
{
single[jOffset + k] = i * j * k;
}
}
}
}
}
static void SingleStandard()
{
for (var passes = 0; passes < TotalPasses; passes++)
{
var single = new int[Size * Size * Size];
for (var i = 0; i < Size; i++)
{
for (var j = 0; j < Size; j++)
{
for (var k = 0; k < Size; k++)
{
single[i * Size * Size + j * Size + k] = i * j * k;
}
}
}
}
}
Lesson learned: Always include CPU in benchmarks, because it makes a difference. Did it this time? I don’t know but I suspect it might’ve.
Original answer:
I would like to update on this, because in .NET Core multi-dimensional arrays are faster than jagged arrays. I ran the tests from John Leidegren and these are the results on .NET Core 2.0 preview 2. I increased the dimension value to make any possible influences from background apps less visible.
Debug (code optimalization disabled)
Running jagged
187.232 200.585 219.927 227.765 225.334 222.745 224.036 222.396 219.912 222.737
Running multi-dimensional
130.732 151.398 131.763 129.740 129.572 159.948 145.464 131.930 133.117 129.342
Running single-dimensional
91.153 145.657 111.974 96.436 100.015 97.640 94.581 139.658 108.326 92.931
Release (code optimalization enabled)
Running jagged
108.503 95.409 128.187 121.877 119.295 118.201 102.321 116.393 125.499 116.459
Running multi-dimensional
62.292 60.627 60.611 60.883 61.167 60.923 62.083 60.932 61.444 62.974
Running single-dimensional
34.974 33.901 34.088 34.659 34.064 34.735 34.919 34.694 35.006 34.796
I looked into disassemblies and this is what I found
jagged[i][j][k] = i * j * k;
needed 34 instructions to execute
multi[i, j, k] = i * j * k;
needed 11 instructions to execute
single[i * dim * dim + j * dim + k] = i * j * k;
needed 23 instructions to execute
I wasn’t able to identify why single-dimensional arrays were still faster than multi-dimensional but my guess is that it has to do with some optimalization made on the CPU