I wrote some code for testing the impact of try-catch, but seeing some surprising results.
static void Main(string[] args)
{
Thread.CurrentThread.Priority = ThreadPriority.Highest;
Process.GetCurrentProcess().PriorityClass = ProcessPriorityClass.RealTime;
long start = 0, stop = 0, elapsed = 0;
double avg = 0.0;
long temp = Fibo(1);
for (int i = 1; i < 100000000; i++)
{
start = Stopwatch.GetTimestamp();
temp = Fibo(100);
stop = Stopwatch.GetTimestamp();
elapsed = stop - start;
avg = avg + ((double)elapsed - avg) / i;
}
Console.WriteLine("Elapsed: " + avg);
Console.ReadKey();
}
static long Fibo(int n)
{
long n1 = 0, n2 = 1, fibo = 0;
n++;
for (int i = 1; i < n; i++)
{
n1 = n2;
n2 = fibo;
fibo = n1 + n2;
}
return fibo;
}
On my computer, this consistently prints out a value around 0.96..
When I wrap the for loop inside Fibo() with a try-catch block like this:
static long Fibo(int n)
{
long n1 = 0, n2 = 1, fibo = 0;
n++;
try
{
for (int i = 1; i < n; i++)
{
n1 = n2;
n2 = fibo;
fibo = n1 + n2;
}
}
catch {}
return fibo;
}
Now it consistently prints out 0.69… — it actually runs faster! But why?
Note: I compiled this using the Release configuration and directly ran the EXE file (outside Visual Studio).
EDIT: Jon Skeet’s excellent analysis shows that try-catch is somehow causing the x86 CLR to use the CPU registers in a more favorable way in this specific case (and I think we’re yet to understand why). I confirmed Jon’s finding that x64 CLR doesn’t have this difference, and that it was faster than the x86 CLR. I also tested using int
types inside the Fibo method instead of long
types, and then the x86 CLR was as equally fast as the x64 CLR.
UPDATE: It looks like this issue has been fixed by Roslyn. Same machine, same CLR version — the issue remains as above when compiled with VS 2013, but the problem goes away when compiled with VS 2015.